(74)
npitoon
(E,P) onika ppagh. \Rightarrow Tuxpiza akonoutia en E Èxe parrikin unakoioulia Opiotiós
Evas p.x. Exae mi ifibmua Bolzano-Weirstrass (IBW) \Leftrightarrow wxavéa akoloutiar tou E होxe ougraivovora unakodoutia.
Zize o f.X. 入égezar kae akodoutraka oufragńs
Mp'raon
Evars fix. (E,P) Eivou akodoutcukón oufinajis an kar tivo an Eivou nגipus 5 odixá gpastiévos.
And द्ध
 Tizr n $\left(a_{v}\right)_{v \in N} d_{a}$ Exke ouzkinovara unakod. upv $\left(\alpha_{k}\right)_{v e n}$ $\Delta n \lambda$. $\lim _{v \in N} a_{k_{v}}=L E E$. Aper $\operatorname{limincN}_{v \in N} \alpha_{v}=l$. Ape (E,p) Nivpns
 fin Éxoura porgiky unxwlaria. A TO 110

A_{i}, ieI kò入uyn la, $E \Leftrightarrow \bigcup_{i \in I} A_{i}=E$
A_{i}, iєJ unokàuyn Ths $A_{i}, i \in I \Leftrightarrow A_{i}, i \in I$ káluyn $K\left\{A_{i}, i \in J\right\} \subseteq\left\{A_{i}, i \in I\right\}$
Mpizaon
Kä̈r oupnajins h.x. sivole is oגikà qpaphívos, apa kole ypagpèvos fe. x.

Eow E orphagis. Zöze Ensejin fra tuxior $\varepsilon>0, E=\bigcup_{x \in E} B(x, \varepsilon)$, E हो $x u$
 กenepaofì̀n kä̀uyy $т \eta^{\kappa} \quad B(x, \varepsilon)$, xeE. $\Delta \eta \lambda . \quad E=\bigcup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)$.

- Aper E oliká sppajhévos.

Processed by FREE version of STOIK

АHMMA (Lebesgue)
Eow (E, P) akohoutiakd optragis fi.X. S A_{i}, iEI fiad avaxtiy kailuyn Tou $E . \operatorname{lizr}(\overrightarrow{\partial r>0})(\forall x \in E)\left(\mathcal{O}_{i \in I}\right): B(x, \varepsilon) \subseteq A_{i}$
Mporaon

 tropei va Eivel o.o. ups $(\alpha)_{v e}$
 Ape $(\forall x \in E)(\partial U(x)): a_{n} \in U(x)$ ुuse nengparpizixa $v \in \mathbb{N}$

 $E=\bigcup_{i=1}^{\circlearrowleft} B\left(x_{i}, \varepsilon\right),(\varepsilon: 子 \varepsilon$ ze Lebesque) AA ì

$$
B\left(x_{1}, \varepsilon\right) \subseteq A i_{1}, \ldots, B\left(x_{k}, \varepsilon\right) \subseteq A i_{k} \Rightarrow E=\bigcup_{i=2}^{v} B\left(x_{i}, \varepsilon\right) \subseteq A i_{1} \cup \ldots \cup A i_{k}
$$

Zहдike $E=A i_{1} \cup \ldots \cup A_{i_{k}}$

